Wednesday, July 14, 2010

1.5 Molecule

Main article: Molecule
A molecule is the smallest indivisible portion, besides an atom, of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. Molecules can exist as electrically neutral units unlike ions. Molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs.
One of the main characteristic of a molecule is its geometry often called its structure. While the structure of diatomic, triatomic or tetra atomic molecules may be trivial, (linear, angular pyramidal etc.) the structure of polyatomic molecules, that are constituted of more than six atoms (of several elements) can be crucial for its chemical nature.

A molecule is defined as an electrically neutral group of at least two atoms in a definite arrangement held together by very strong (covalent) chemical bonds. Molecules are distinguished from polyatomic ions in this strict sense. In organic chemistry and biochemistry, the term molecule is used less strictly and also is applied to charged organic molecules and biomolecules.
In the kinetic theory of gases, the term molecule is often used for any gaseous particle regardless of its composition. According to this definition noble gas atoms are considered molecules despite the fact that they are composed of a single non-bonded atom.

A molecule may consist of atoms of a single chemical element, as with oxygen (O2), or of different elements, as with water (H2O). Atoms and complexes connected by non-covalent bonds such as hydrogen bonds or ionic bonds are generally not considered single molecules.

Molecules as components of matter are common in organic substances (and therefore biochemistry). They also make up most of the oceans and atmosphere. A large number of familiar solid substances, however, including most of the minerals that make up the crust, mantle, and core of the Earth itself, contain many chemical bonds, but are not made of identifiable molecules. No typical molecule can be defined for ionic crystals (salts) and covalent crystals (network solids), although these are often composed of repeating unit cells that extend either in a plane (such as in graphene) or three-dimensionally (such as in diamond or sodium chloride). The theme of repeated unit-cellular-structure also holds for most condensed phases with metallic bonding. In glasses (solids that exist in a vitreous disordered state), atoms may also be held together by chemical bonds without any definable molecule, but also without any of the regularity of repeating units that characterises crystals.

History and etymology
Main article: History of the molecule
According to Merriam-Webster and the Online Etymology Dictionary, the word "molecule" derives from the Latin "moles" or small unit of mass.

Molecule (1794) – "extremely minute particle," from Fr. molécule (1678), from Mod.L. molecula, dim. of L. moles "mass, barrier". A vague meaning at first; the vogue for the word (used until late 18th century only in Latin form) can be traced to the philosophy of Descartes.
Although the existence of molecules has been accepted by many chemists since the early 19th century as a result of Dalton's laws of Definite and Multiple Proportions (1803–1808) and Avogadro's law (1811), there was some resistance among positivists and physicists such as Mach, Boltzmann, Maxwell, and Gibbs, who saw molecules merely as convenient mathematical constructs. The work of Perrin on Brownian motion (1911) is considered to be the final proof of the existence of molecules.

The definition of the molecule has evolved as knowledge of the structure of molecules has increased. Earlier definitions were less precise, defining molecules as the smallest particles of pure chemical substances that still retain their composition and chemical properties.This definition often breaks down since many substances in ordinary experience, such as rocks, salts, and metals, are composed of large networks of chemically bonded atoms or ions, but are not made of discrete molecules.

No comments:

Post a Comment