Wednesday, July 14, 2010

1.3 Compound

Main article: Chemical compound
Wider definitions:
There are a few exceptions to the definition above. Certain crystalline compounds are called "non-stoichiometric" because they vary in composition due to either the presence of foreign elements trapped within the crystal structure or a deficit or excess of the constituent elements. Some compounds regarded as chemically identical may have varying amounts of heavy or light isotopes of the constituent elements, which will make the ratio of elements by mass vary slightly. A compound therefore may not be completely homogeneous, but for most chemical purposes it can be regarded as such.

A compound is a substance with a particular ratio of atoms of particular chemical elements which determines its composition, and a particular organization which determines chemical properties. For example, water is a compound containing hydrogen and oxygen in the ratio of two to one, with the oxygen atom between the two hydrogen atoms, and an angle of 104.5° between them. Compounds are formed and interconverted by chemical reactions.

A chemical compound is a pure chemical substance consisting of two or more different chemical elements that can be separated into simpler substances by chemical reactions. Chemical compounds have a unique and defined chemical structure; they consist of a fixed ratio of atoms that are held together in a defined spatial arrangement by chemical bonds. Chemical compounds can be molecular compounds held together by covalent bonds, salts held together by ionic bonds, intermetallic compounds held together by metallic bonds, or complexes held together by coordinate covalent bonds. Pure chemical elements are not considered chemical compounds, even if they consist of molecules which contain only multiple atoms of a single element (such as H2, S8, etc.) .

Elements form compounds to become more stable. They become stable when they have the maximum number of possible electrons in their outermost energy level, which is normally two or eight valence electrons. This is the reason that noble gases do not frequently react: they already possess eight valence electrons (the exception being helium, which requires only two valence electrons to achieve stability).

No comments:

Post a Comment