Sunday, July 11, 2010

1.2 Element

Main article: Chemical element
The concept of chemical element is related to that of chemical substance. A chemical element is characterized by a particular number of protons in the nuclei of its atoms. This number is known as the atomic number of the element. For example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, and all atoms with 92 protons in their nuclei are atoms of the element uranium. 94 different chemical elements or types of atoms based on the number of protons exist naturally. A further 18 have been recognised by IUPAC as existing artificially only. Although all the nuclei of all atoms belonging to one element will have the same number of protons, they may not necessarily have the same number of neutrons, such atoms are termed isotopes. In fact several isotopes of an element may exist.


The most convenient presentation of the chemical elements is in the periodic table of the chemical elements, which groups elements by atomic number. Due to its ingenious arrangement, groups, or columns, and periods, or rows, of elements in the table either share several chemical properties, or follow a certain trend in characteristics such as atomic radius, electronegativity, etc. Lists of the elements by name, by symbol, and by atomic number are also available.

A chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, which is the number of protons in its nucleus.[1] Common examples of elements are iron, copper, silver, gold, hydrogen, carbon, nitrogen, and oxygen. In total, 118 elements have been observed as of March 2010, of which 94 occur naturally on Earth. 80 elements have stable isotopes, namely all elements with atomic numbers 1 to 82, except elements 43 and 61 (technetium and promethium). Elements with atomic numbers 83 or higher (bismuth and above) are inherently unstable, and undergo radioactive decay. The elements from atomic number 83 to 94 have no stable nuclei, but are nevertheless found in nature, either surviving as remnants of the primordial stellar nucleosynthesis that produced the elements in the solar system, or else produced as short-lived daughter-isotopes through the natural decay of uranium and thorium.[2]

All chemical matter consists of these elements. New elements of higher atomic number are discovered from time to time, as products of artificial nuclear reactions.
History
Mendeleev's 1869 periodic tableAncient philosophy posited a set of classical elements to explain patterns in nature. Elements originally referred to earth, water, air and fire rather than the chemical elements of modern science.
The term 'elements' (stoicheia) was first used by the Greek philosopher Plato in about 360 BCE, in his dialogue Timaeus, which includes a discussion of the composition of inorganic and organic bodies and is a speculative treatise on chemistry. Plato believed the elements introduced a century earlier by Empedocles were composed of small polyhedral forms: tetrahedron (fire), octahedron (air), icosahedron (water), and cube (earth).[3][4]
Aristotle, c. 350 BCE, also used the term stoicheia and added a fifth element called aether, which formed the heavens. Aristotle defined an element as:
Element – one of those bodies into which other bodies can decompose, and that itself is not capable of being divided into other.[5]
Building on the theory, Arab/Persian chemist and alchemist, Jābir ibn Hayyān (Geber c. 790), postulated that metals were formed out of two elements: sulfur, ‘the stone that burns’, which characterized the principle of combustibility, and mercury, which contained the idealized principle of metallic properties.[6] Shortly thereafter, this evolved into the Arabic concept of the three principles: sulfur giving flammability or combustion, mercury giving volatility and stability, and in the 10th century, Persian physician and alchemist Muhammad ibn Zakarīya Rāzi (Rhazes) hints at salt giving solidity.

In 1524, Swiss chemist Paracelsus adopted Aristotle’s four element theory, but reasoned that they appeared in bodies as three principles. Paracelsus saw these principles as fundamental, and justified them by recourse to the description of how wood burns in fire. Mercury included the cohesive principle, so that when it left in smoke the wood fell apart. Smoke represented the volatility (the mercury principle), the heat-giving flames represented flammability (sulfur), and the remnant ash represented solidity (salt).[6]

In 1669, German physician and chemist Johann Becher published his Physica Subterranea. In modification on the ideas of Paracelsus, he argued that the constituents of bodies are air, water, and three types of earth: terra fluida, the mercurial element, which contributes fluidity and volatility; terra lapida, the solidifying element, which produces fusibility or the binding quality; and terra pinguis, the fatty element, which gives material substance its oily and combustible qualities.[7] These three earths correspond with Geber’s three principles. A piece of wood, for example, according to Becher, is composed of ash and terra pinguis; when the wood is burnt, the terra pinguis is released, leaving the ash. In other words, in combustion the fatty earth burns away.

In 1661, Robert Boyle showed that there were more than just four classical elements as the ancients had assumed.[8] The first modern list of chemical elements was given in Antoine Lavoisier's 1789 Elements of Chemistry, which contained thirty-three elements, including light and caloric.[9] By 1818, Jöns Jakob Berzelius had determined atomic weights for forty-five of the forty-nine accepted elements. Dmitri Mendeleev had sixty-six elements in his periodic table of 1869.

From Boyle until the early 20th century, an element was defined as a pure substance that cannot be decomposed into any simpler substance.[8] Put another way, a chemical element cannot be transformed into other chemical elements by chemical processes. In 1913, Henry Moseley discovered that the physical basis of the atomic number of the atom was its nuclear charge, which eventually led to the current definition. The current definition also avoids some ambiguities due to isotopes and allotropes.

By 1919, there were seventy-two known elements.[10] In 1955, element 101 was discovered and named mendelevium in honor of Mendeleev, the first to arrange the elements in a periodic manner. In October 2006, the synthesis of element 118 was reported; the synthesis of element 117 was reported in April 2010.[11]

1 comment:

  1. A large part of Alfa Chemistry's customers are pharmaceutical and biotechnology companies, including Pfizer, Novartis, Merck & Co., Johnson & Johnson, AstraZeneca, and Bayer. Alfa Chemistry is also a preferred partner for many universities and non-profit institutes. TPBA

    ReplyDelete