Friday, July 16, 2010

1.6.1 History of mole

The first table of atomic weights was published by John Dalton (1766–1844) in 1805, based on a system in which the atomic weight of hydrogen was defined as 1. These atomic weights were based on the stoichiometric proportions of chemical reactions and compounds, a fact which greatly aided their acceptance: it was not necessary for a chemist to subscribe to atomic theory (an unproven hypothesis at the time) to make practical use of the tables. This would lead to some confusion between atomic weights (promoted by proponents of atomic theory) and equivalent weights (promoted by its opponents and which sometimes differed from atomic weights by an integer factor), which would last throughout much of the nineteenth century.

Jöns Jacob Berzelius (1779–1848) was instrumental in the determination of atomic weights to ever increasing accuracy. He was also the first chemist to use oxygen as the standard to which other weights were referred. Oxygen is a useful standard, as, unlike hydrogen, it forms compounds with most other elements, especially metals. However he chose to fix the atomic weight of oxygen as 100, an innovation which did not catch on.

Charles Frédéric Gerhardt (1816–56), Henri Victor Regnault (1810–78) and Stanislao Cannizzaro (1826–1910) expanded on Berzelius' work, resolving many of the problems of unknown stoichiometry of compounds, and the use of atomic weights attracted a large consensus by the time of the Karlsruhe Congress (1860). The convention had reverted to defining the atomic weight of hydrogen as 1, although at the level of precision of measurements at that time—relative uncertainties of around 1%—this was numerically equivalent to the later standard of oxygen = 16. However the chemical convenience of having oxygen as the primary atomic weight standard became ever more evident with advances in analytical chemistry and the need for ever more accurate atomic weight determinations.

Scale basis Scale basis
relative to 12C = 12 Relative deviation
from the 12C = 12 scale
Atomic weight of hydrogen = 1 1.007 94(7) −0.788%
Atomic weight of oxygen = 16 15.9994(3) +37.5 ppm
Relative atomic mass of 16O = 16 15.994 914 6221(15) +318 ppm

Other units called "mole"
Chemical engineers use the concept extensively, but the unit is rather small for industrial use. For convenience in avoiding conversions, some American engineers adopted the pound-mole (noted lb-mol or lbmol), which is defined as the number of entities in 12 lb of 12C. One lb-mol is equal to 453.59237 mol.[11] In the metric system, chemical engineers once used the kilogram-mole (noted kg-mol), which is defined as the number of entities in 12 kg of 12C, and often referred to the mole as the gram-mole (noted g-mol), when dealing with laboratory data.[11] However modern chemical engineering practice is to use the kilomole (kmol), which is identical to the kilogram-mole, but whose name and symbol adopt the SI convention for standard multiples of metric units.

Proposed future definition
Kilogram
As with other SI base units, there have been proposals to redefine the kilogram in such a way as to define some currently measured physical constants to fixed values. One proposed definition of the kilogram is:

The kilogram is the mass of exactly (6.0221415×1023⁄0.012) unbound carbon-12 atoms at rest and in their ground state.
This would have the effect of defining the Avogadro constant to be precisely 6.0221415×1023 elementary entities per mole.

Holiday
October the 23rd (10/23), "Mole Day", is an informal holiday in honor of the unit among chemists in North America. The date is derived from the Avogadro constant, which is approximately 6.02×1023.

No comments:

Post a Comment